Main »

Katex Test

{$$ E = mc^2 $$}

{$$ \mathcal{O}(\log(n)) \equiv \mathbb{E}[1] $$}

{$$ \mathbb{E}[x_{i}]\approx \mu+\sigma\Phi^{-1}\left(\frac{i}{N+1}\right)\left[1+\frac{\left(\frac{i}{N+1}\right)\left(1-\frac{i}{N+1}\right)}{2(N+2)\left[\phi\left[\Phi^{-1}\left(\frac{i}{N+1}\right)\right]\right]^{2}}\right] $$}

{$$ P(a|b) = \frac{ P(b|a) \cdot P(a) }{ (P(b|a) \cdot P(a)) + (P(b|\lnot a) \cdot P(\lnot a)) } = \frac{ 0.05 \cdot 0.9 }{ ((0.05 \cdot 0.9) + (0.95 \cdot 0.1)) } = \frac{ 0.045 }{ ((0.05 \cdot 0.9) + (0.95 \cdot 0.1)) } = \frac{ 0.045 }{ (0.045 + (0.95 \cdot 0.1)) } = \frac{ 0.045 }{ (0.045 + 0.095) } = \frac{ 0.045 }{ 0.14 } = 0.32 $$}

{$$ \color{red}{\text{red}}(x) $$}

{$$ \color{blue}{\mathcal{O}(\log(n))} \equiv \color{red}{\mathbb{E}[1]} $$}